BON SECOURS COLLEGE FOR WOMEN

Nationally Accredited with 'A' Grade by NAAC UGC Recognized 2(f) and 12(B) Institution VILAR BYPASS, THANJAVUR - 613 006

DEPARTMENT OF PHYSICS

PROGRAMME OUTCOMES:

PO1. Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.

PO2. Effective Communication: Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.

PO3. Social Interaction: Elicit views of others, mediate disagreements and help reach conclusions in group settings.

PO₄. Effective Citizenship Obtain quality education in the basic areas of Botany

PO5. Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.

PO6. Environment and Sustainability: Understand the issues of environmental contexts and sustainable development

PO7. Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes.

PROGRAM SPECIFIC OUTCOME:

PSO1: Students will understand the basic laws and explore the fundamental concepts of physics

PSO2: Students will understand the concepts and significance of the various physical phenomena.

PSO₃: Studnts will carry out experiments to understand the laws and concepts of Physics

PSO4: Students will apply the theories learnt and the skills acquired to solve real time problems.

PSO5: Students will acquire a wide range of problem solving skills, both analytical and technical and to apply them.

PSO6: Students will enhance the student's academic abilities, personal qualities and transferable skills this will give them an opportunity to develop as responsible citizens.

PSO7: Students will be provided a hands-on learning experience such as in measuring the basic concepts in properties of matter, heat, optics, electricity and electronics

COURSE OUTCOMES FOR UNDER GRADUATE

NAME OF THE COURSE	COURSE OUTCOMES	COURSE LEARNING OUTCOME	BLOOM TAXONOMY
	CO1	Acquire knowledge about the basic characteristics to the matter through their	Lı
		properties Determine the properties of bending on	
	CO ₂	beams	Lı
D C	CO ₃	Correlate the property of surface tension of liquids with different natural phenomena.	L ₄
Properties of Matter and	CO ₄	Define Viscosity and describe how viscosity can be measured	Lı
Acoustics	CO ₅	Familiarise with general terms in acoustics like intensity, loudness, reverberation etc, and study in detail about production, detection, properties and uses of ultrasonic waves.	Lı
	CO6	Apply physical principle in analysing acoustical systems	L ₃
Practical I	CO1	Determine certain physical constants and properties	Lı
	CO ₂	Verify the physical constants	L2
	CO1	Understands the need and knowledge of the projectile motion, impulse	L2
	CO2	Ability to evaluate the usefulness of impact	L ₄
	CO ₃	Learn basics of the kinematics and dynamics linear and rotational motion	Lı
Mechanics	CO ₄	Learn the basics of potentials and fields, central forces and Kepler's laws	Lı
	CO ₅	Acquire basic knowledge of Moment of inertia and oscillation.	Lı
	CO6	Solve the equations of Newtonian Gravity and central force problem	Lı
	CO1	Acquire the knowledge of the nature of calorimetry by specific heat of solids	Lı
	CO ₂	Define and describe law of thermodynamics and entropy	Lı
Thermal Physics	CO ₃	Understanding the low temperature physics	L2
Thermal I mysics	CO ₄	Analyses thermal conducitivity and black body radiation	L ₃
	CO ₅	Apply the statistical methods	L ₃
	CO6	Define zeroth law of thermodynamics and entropy	Lı
Electricity, Magnetism and Electromagnetism	CO1	Understand the concept of principle & working of capacitors. Demonstrate law, and apply it to systems	L2
U	CO ₂	Analyse the chemical and heating effect of current	L ₄
	CO ₃	Understand the dielectric properties, magnetic properties of materials and the	L2

		phenomena of electromagnetic induction.	
	CO ₄	Apply Kirchhoff's rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.	L ₃
	CO ₅	Describe how magnetism is produced and list examples where its effects are observed	Lı
Practical II	CO1	Determine the Physical constants and their properties	Lı
	CO1	Understand the natural behaviour of aberration in lens	L2
	CO ₂	Study the theory and experiment of interference using air wedge, newtons rings and michelson interferometer	Lı
Optics	CO ₃	Understand the working of selected optical instruments like biprism, interferometer, diffraction grating, and holograms.	L2
	CO ₄	Study the theory and experimental past of diffraction by fresnels and fraunhoffer methods	Lı
	CO ₅	Study the theories for production of polarization of light	Lı
	CO6	Understand the theory and application of microwave, infrared and raman spectrocopy	L2
	CO1	Understand the properties of positive rays, experimental proof by frank and hertz method	L2
	CO ₂	Analyse the relationship between various types of couplings	L ₄
Atomic and Molecular Physics	CO ₃	Understand the properties of x-ray verification	L2
	CO ₄	Acquire the knowledge of photoelectric effect and free electron theory of metals	Lı
	CO ₅	Learn about Laser and spectrum	Lı
	CO6	Understand the knowledge of laser and spectra	L2
	CO1	Understand the basics of diode and working of rectifier circuits and characteristics	L2
	CO ₂	Analyse the characteristics of transistor and transistor biasing circuits	L ₄
Electronics	CO ₃	Analyse the relationship between amplifier and oscillators	
	CO ₄	Learn about analog systems and digital systems and their differences, fundamental logic gates, combinational as well as sequential and number systems.	Lı
	CO ₅	Understand the process of flipflap by using mathematical operation, an op amp act as voltage regulator	L2

	CO6	Understand the applications of op-amps i	L2
		inverting and non inverting modes.	
	CO1	Learn about the Crystal structure	Lı
	CO ₂	Gains the knowledge about super conducting materials and Nano material	Lı
	CO ₃	Acquire knowledge about the nanomaterials	L ₁
35 10 .		Students may inculcate knowledge on smart	
Material Science	CO ₄	material.	Lı
	CO ₅	Students will get knowledge on Mechanical behaviour of materials.	Lı
	CO1	Determine the Physical constants and their properties.	Lı
Practical III	CO ₂	Learn to verify the characteristics and application of the physical constants	Lı
	CO ₁	Explain nuclei properties, compare a drop of liquid with that of a nucleus and understand Shell model Able to understand the size of nucleus and all its properties	Lı
	CO ₂	Describe basic radioactivity, calculate half- lives and understand radiation hazards	Lı
Nuclear Physics	CO ₃	Distinguish between principles and working of different types of detectors, counters and accelerators	Lı
	CO ₄	Perform the procedures for nuclear fission and fusion	L ₃
	CO ₅	Distinguish between the forces of nature, recall the properties of cosmic rays, Classify elementary particles	L3
	CO ₁	Acquire knowledge about lagrangian formulation	Lı
	CO2	Understand the Hamilton's formulation	L2
	CO ₃	About the basic concept of matter waves.	Lı
Theoritical Physics	CO ₄	Perform the theories of quantum mechanics into scrodinger wave equation	Lı
	CO ₅	Analyse the basic functions of eigen values and eigen functions	L ₃
	CO6	Solve the hydrogen atom problem by using quantum mechanics.	L ₃
	CO1	Learn the architecture of embedded systems, their classification and application	Lı
Microprocessor	CO ₂	Acquire the knowledge about the architecture of microprocessor 8085	Lı
and 'C' Programmimg	CO ₃	Discuss and write programming code for the basic arithmetic and logic operations available in assembly language	Lı
	CO ₄	Understand the basic concepts of	L ₂

		fundamentals of operators and expressions	
	CO ₅	Analyse the various types of function	L ₃
	CO ₁	Distinguish between different amplitude modulation schemes with their advantages,	L3
		disadvantages and applications. Study the principle and working of fibre	
	CO ₂	optic communication.	Lı
Communication Physics	CO ₃	Learn about the principle of the RADAR communication and Doppler effect	Lı
	CO ₄	Learn adequate knowledge about principle, working & types of satellite. To understand the basics of	Lı
	CO ₅	Understand the basics of Wireless Communication Networks	L2
Practical IV	CO1	Develop a program in microprocessor and C++ in solving some mathematical problems	L6

PROGRAM OUTCOME FOR POST GRADUATE

PO1: Apply theoretical knowledge of principles and concepts of Physics to practical problems.

PO2: Use mathematical techniques and interpret mathematical models of physical behavior.

PO3: Demonstrate the ability to plan, undertake, and report on a programme of original work; including the planning and execution of experiments, the analysis and interpretation of experimental results.

PO4: Assess the errors involved in an experimental work and make recommendations based on the results in an effective manner.

PO₅: Develop communication skills, both written and oral, for specialized and non-specialized audiences

PO6: Enhance and adopt new skills for future employability in teaching and research through seminar, internship and dissertation

PO7: Successfully compete at national and international level competitive examinations

PROGRAM SPECIFIC OUTCOME FOR POST GRADUATE

PSO1: Understand the set of physical laws, describing the motion of bodies under the influence of system of forces

PSO₂: Analyze the applications of mathematics to the problems in physics & to develop the suitable mathematical method for such application & for formulation of physical theories.

PSO3: Learn the structure of solid materials & their different physical properties along with electronics & material science.

PSO4: Understand the fundamental theory of nature at small scale & level of atom & sub atomic particles.

PSO₅: Assess the errors involved in an experimental work and make recommendations based on the results in an effective manner.

PSO6: Develop research skills which might include advanced laboratory techniques, numerical techniques, computer algebra, computer interfacing.

PSO7: Develop the skill to plan, execute and report results of an extended experimental or theoretical physics based project in a research environment.

COURSE OUTCOME FOR POST GRADUATE

COURSE NAME	COURSE OUTCOME	COURSE LEARNING OUTCOME	BLOOMS TAXONOMY
	CO1	Learn the gauss theorem, greens theorem, strokes theorem and solve the problems	Lı &L3
	CO2	Learn about special type of matrices that are relevant in physics and Solve problems related to eigen values and eigen vectors. Students will be able to learn about the concept and uses of Tensors	Lı &L3
Mathematical Physics	CO3	Understand the basic knowledge of Group theory and its applications	L2
	CO4	Solve different physical problems which contain complex variables.	L ₃
	CO5	Understand Special functions like Gamma function, Beta function, Delta function, Dirac delta function, Bessel functions and their recurrence relations	L2
	CO1	Identify the Lagrangian mechanics concepts and solve the problems with the help of Lagrangian mechanics.	Lı &L3
Classical Dynamics and Relativity	CO2	Solve the equations of coupled oscillator and to examine the two coupled pendulums, and double pendulum related problems.	L ₃
	соз	Learn and apply rigid body dynamics and oscillatory motion.	Lı &L3
	CO4	Learn about the Hamilton's formulation. And its application.	Lı
	CO5	Solve the problems of classical and relativistic mechanics	L ₃
	CO1	Design combinational and sequential digital logic circuits	L6
Electronics	CO2	Analyse and design basic op-amp circuits, linear and non-linear circits, signal generators and data converters	L4 &L6
	СО3	Understand and Analyse semiconductors and opto- electronic devices	L2&L4
	CO4	Design, test and analyse simple circuits using gates,	L4&L6

		flip flops, counters and registers	
	60 .	Test, repair, modify and take up design exercise on	1.6
	CO5	digital electronics	L6
	CO1	Familiarize with the basic principles of various	Lı
	COI	spectroscopic techniques	LI
	CO2	Identify the Spectral terms and their notation.	Lı
	CO3	Compare and contrast atomic and molecular spectra	L4
Method s of Spectroscopy	CO4	Lear the Information about the consequence of an atom in application of electric and magnetic field.	Lı
	CO5	State and justify the selection rules for various optical spectroscopic in terms of the symmetries of molecular vibrations able to interpret spectra of the samples	Lı
Dl	CO1	Determine certain physical constants and properties	Lı
Physics Practical- I	CO2	Verify the physical constants	L3
Fractical. I	CO3	Understands the electronic components and devices.	Lı
	CO1	Define electric and magnetic fields	Lı
	CO2	Calculate electric and magnetic fields from stationary and dynamic charge and current distributions.	L ₃
Electromagnetic Theory	CO3	Solve simple electrostatic boundary problems	L ₃
J. J.	CO4	Be able to choose adequate models and solution methods for specific problems	L3
	CO5	Be able to choose adequate models and solution methods for specific problems	L ₃
	CO1	Apply the principles of quantum mechanical to calculate observables on known wave functions.	L ₃
	CO2	Acquire fundamental knowledge on Hilbert space, hermitian Operator and Bra-ket notation.	Lı
Qunatum Mechnics	CO3	Understand the concept of Eigen value involved in one, two and three dimensional system.	L2
- Accounted	CO4	Solve time-dependent and time-independent Schrödinger equation for simple potentials	L ₃
	CO5	Understand the basic knowledge on relativistic quantum mechanics. Understand combine spins and angular momentum.	L2
Physics Practical II	CO1	Develop a program in microprocessor and C++ in solving some mathematical problems	L6
	CO1	Learn the internal organization of popular microprocessor/ microcontrollers.	Lı
Microprocessor	CO2	Understand the architecture of 8085 and 8051. Impart the knowledge about the instruction set	L2
and Microcontroller	CO3	Understand the basic ideas about the data transfer schemes and its application	L2
	CO4	Develop skill in simple program writing for 8051& 8085 and application	L6

	CO5	Learn the hardware and software interaction and integration.	Lı
Numerical Methods and C++	CO1	Solve an algebraic or transcendental equation using an	L3
	CO2	appropriate numerical method Solve a function using an appropriate numerical method	L ₃
	CO3	Solve a differential equation using an appropriate numerical method	L ₃
Programming	CO4	Evaluate a derivative at a value using an appropriate numerical value	L5
	CO5	Solve a linear system of equations using a appropriate numerical method	L ₃
	CO1	Derive relations between thermodynamical quantities.	L3
	CO2	Learn the basic concept of MaxwellBoltzmann relation	Lı
Statistical Mechanics	CO3	Discuss the concepts of microstate and macrostate of a model system	Lı
Mechanics	CO4	Apply the Fermi-Dirac distribution to the calculation of thermal properties of electrons in metals	L3
	CO5	Learn the ferromagnetism and paramagnetism in terms of statistical mechanics.	Lı
	CO1	Learn the crystal systems and kinds of crystalline order and X ray diffraction techniques.	Lı
	CO2	Knowledge about lattice vibrations and thermal properties.	Lı
Solid State Physics	CO3	Knowledge of Free electron theory, energy bands and semiconductor crystals	Lı
	CO4	Classify Dia , Para Ferro and Anti Ferro magnetisms	L2
	CO5	Understands the concept of super conductors and its application and classification of Ferro electric materials.	L2
	CO1	Determine the Physical constants and their properties.	L ₁
Physics Practicals III	CO2	Learn to verify the characteristics and application of the physical constants	Lı
	CO1	Understand the basic concepts of crystal growth and formation of nucleation.	L2
	CO2	Learn about solvents & solutions. slow cooling & slow evaporation process.	Lı
Crystal Growth and Thin Film Physics	СО3	Develop a new crystal using solution growth method. Understand the concept about gel, melt& vapour growth techniques in detail	L2
	CO4	Students are able to implement their theoretical knowledge in their research work like sputtering, spray pyrolysis, sol gel technique	Lı
	CO5	Evaluate the properties of the material using characterisation techniques	L5
Non Linear	CO1	Gain Knowledge in an application of the laser in various fields	Lı
Non-Linear Optics	CO2	Lear the basics of harmonic generation and how light will be propagate through an isotropic material.	Lı
	CO3	Apply the principles to phenomena based on	L3

		frequency conversion, electro-optic effect, and	
		nonlinear index of refraction	
		Acquired the fundamental concept of photon and	
	CO4	photon interaction, stimulated Raman scattering and	Lı
	004	the nonlinear materials used for Research.	LI
		Learn types of NLO materials and its basic	
	CO5	requirements.	Lı
		Learn of core concepts in physics to more advanced	
	CO1	topics in nuclear and particle physics.	Lı
		Understand the concept of alpha emission, types,	
	CO2	basic principles of particle detectors	L2
Nuclear and	CO3	Explain about shell models & magic numbers	Lı
Particle Physics		Describe fission & fusion reactions, construction and	Li
	CO4	working principle of thermal reactors.	Lı
		Learn astro physics & life cycle of stars and the	
	CO1	concept of galaxy & universe.	Lı
		Illustrates the India's space programme and also to	
	CO2	know about the purpose of launching satellites.	L2
		Explain the working principle of bio medical	Lı
Advanced	CO3	Instruments in medical field.	
Physics		Determine the type and appropriate model of wireless	
	CO4	fading channel based on the system parameters and	Lı
		the property of the wireless medium.	
	CO5	Analyse receiver and transmitter diversity techniques	L ₄
	006	Explain the real life applications of wireless	
	CO6	communication technology	Lı
Physics	CO1	Learn to verify the electronic devices	Lı
Practical-IV	COI		Ll
		Explain the nano science and technology in light of	
	CO1	quantum confinement.	Lı
		Understand various phenomenon's like quantum dot,	Li
		quantum wire.	
	CO2	Understand the basic knowledge about C60 molecules	L2
Nanophysics	CO3	Synthesis a nanoparticle using various synthesis	L6
	CUS	techniques with proper understanding	ГО
	CO4	Analysis the nano crystal with structural and opto	L ₄
	004	electrical properties	L4
	CO5	Understanding regarding the basic principle behind	L ₂
		the various microscopic techniques.	
Project	CO1	Design and evaluate the Problem	L5 &L6